Topics in the June 2013 Exam Paper for CHEM1611

Click on the links for resources on each topic.

2013-J-2:

- Atomic Structure
- Chemical Bonding

2013-J-3:

• Chemical Bonding

2013-J-4:

- Chemical Bonding
- The Shapes of Molecules

2013-J-5:

Atomic Structure

2013-J-6:

- Alkenes
- Alcohols, Phenols, Ethers and Thiols
- Carboxylic Acids and Derivatives
- Amines

2013-J-7:

- Introduction to Organic Chemistry
- Stereochemistry

2013-J-8:

- Alkenes
- Alcohols, Phenols, Ethers and Thiols
- Carboxylic Acids and Derivatives

2013-J-9:

• Carbohydrates

2013-J-10:

• Amino Acids, Peptides and Proteins

2013-J-11:

• Amino Acids, Peptides and Proteins

2013-J-12:

• DNA and Nucleic Acids

2216(a)

THE UNIVERSITY OF SYDNEY <u>CHEM1611 - CHEMISTRY 1A (PHARMACY)</u> <u>FIRST SEMESTER EXAMINATION</u>

CONFIDENTIAL

JUNE 2013

TIME ALLOWED: THREE HOURS

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY NAME	SID NUMBER	
OTHER NAMES	TABLE NUMBER	

- All questions are to be attempted. There are 19 pages of examinable material.
- Complete the examination paper in INK.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new short answer question begins with a •.
- Only non-programmable, Universityapproved calculators may be used.
- Students are warned that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheets.
- Pages 14, 16, 22 and 24 are for rough work only.

OFFICIAL USE ONLY

Multiple choice section				
		Marks		
Pages	Max	Gained		
2-9	30			

Short answer section

	Marks			
Page	Max	Gained		Marker
10	4			
11	5			
12	10			
13	5			
15	11			
17	6			
18	6			
19	6			
20	6			
21	6			
23	5			
Total	70			
Check	Total			

• In the spaces provided, briefly explain the meaning of the following terms.	Marks 4
Effective nuclear charge	
Atomic emission spectrum	
Ionic bonding	_
Core electrons	
THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.]

• Silicon and carbon are both in Group 14 and form dioxides. Carbon dioxide is a gas at room temperature while silicon dioxide (sand) is a solid with a high melting point. Describe the bonding in these two materials and explain the differences in properties they show. • Complete the following nuclear equations by filling in the missing particle. $\frac{{}^{14}N + {}^{1}P \rightarrow {}^{11}C +$ $\frac{{}^{16}C \rightarrow + {}^{0}e^{+}$

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

CHEM1611

• Draw the Lewis structure of the acetate ion (CH ₃ COO ⁻) showing all appropriate resonance structures.			
Indicate the hybridisation, molecular geometry and approximate bond angle about each of the carbon atoms in the acetate ion.			
-CH ₃ -COO ⁻			
Hybridisation of C			
Molecular geometry about C			
Approximate bond angles about C			
The actual structure of the acetate ion is a weighted combination of all resonance structures. Sketch the σ -bond framework of the acetate ion and indicate the <i>p</i> -orbitals that are involved in the π -bonding of the acetate ion.			
How many electrons are involved with the π -bonding?			
What is the hybridisation of the oxygen atoms in the acetate ion?			

• The y What appro	ellow light emitted from an excited s is the energy of one photon of this lig priate units with your answers.	odium atom has a wavelength of 590 nm. ght and one mole of photons? Specify	Marks 5
Energy	of one photon:	of 1 mol of photons:	
The y return diagra light.	ellow light is associated with the long is to the ground state electron configu- am for sodium and indicate the transit	gest wavelength transition as the atom tration. Fill in the following energy level tion associated with the emission of yellow	
Energy	/		
4 <i>s</i> 3 <i>s</i>	3 <i>p</i> 3 <i>p</i>	3 <i>d</i>	
2 <i>s</i>	2p	_	
1s			
A qua sodiu	ntum mechanical model of an atom c m, but the Bohr model of the atom ca	can explain the emission spectrum of not. Why?	

CHEM1611

• Complete the following table. Make sure you complete the name of the starting material where indicated.			
STARTING MATERIAL	REAGENTS/ CONDITIONS	CONSTITUTIONAL FORMULA(S) OF MAJOR ORGANIC PRODUCT(S)	
	HBr / CCl4 (solvent)		
OH Name:		OCH3	
Br	1. Mg / dry ether 2. CO ₂ 3. H [⊕] / H ₂ O		
	3 M NaOH		
O Cl	excess (CH ₃) ₂ NH		
Name:			
Br—NH2	2 M HCl		

Marks • Oseltamivir, marketed under the trade name Tamiflu, is an antiviral drug, which may 6 slow the spread of influenza (flu) virus between cells in the body by stopping the virus from chemically cutting ties with its host cell. Ο Tamiflu NH_2 ΗŃ \cap Give the molecular formula of Tamiflu. List the functional groups present in Tamiflu. How many stereogenic centres are there in Tamiflu? How many possible stereoisomers can exist for Tamiflu? Add the NH₂ and H groups to the stereogenic centre indicated below to give the (*R*)-configuration of that centre. \mathbf{O} ΗŃ \mathbf{O}

Marks • Consider the following two monosaccharides, (A) and (B). 6 CH₂OH CH₂OH Η O OH **(B)** (A) OH НО Η̈́ ÓН ΗĊ Ĥ. ĠН ÓН Ĥ β-D-altropyranose α -D-xylofuranose Draw Fischer projections of the open chain forms of (A) and (B). (A) **(B)** Draw the major organic product of the reaction of D-altropyranose with the following reagents. $[Ag(NH_3)_2]^{\oplus}/OH^{\Theta}$ 1. NaBH₄ 2. H^{\oplus}/H_2O Draw the Haworth stereoformula of a non-reducing disaccharide formed from (A) and (B).

Marks

6

• The amino acid, asparagine, was isolated from asparagus juice in 1806. The uncharged form, **Y**, is given below.

$$\begin{array}{c} O \\ H_2 N - C - C H_2 - C H - C O O H \\ I \\ N H_2 \end{array}$$

Draw the constitutional formula of the product(s) formed in the reaction of **Y** with the following reagents.

Cold, dilute hydrochloric acid	Cold, dilute sodium hydroxide
Hot, 6 M hydrochloric acid	Hot, 6 M sodium hydroxide

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

Alanine ($R = CH_3$) and lysine ($R = CH$ acids. Using <i>ala</i> and <i>lys</i> to represent the isomers of the tripeptide formed from r	$H_2CH_2CH_2CH_2NH_2$) are two common amino he two amino acids, represent all constitutional one <i>ala</i> and two <i>lys</i> units.
Comment, giving your reason(s), on w or basic in character.	whether the tripeptide(s) will be acidic, neutral
The p K_a values of lysine are 1.82 (α -C What is the value of the isoelectric poi	COOH), 8.95 (α -NH ₃ °) and 10.53 (side chain). int of lysine?
The p K_a values of lysine are 1.82 (α -C What is the value of the isoelectric poi	COOH), 8.95 (α -NH ₃ °) and 10.53 (side chain). int of lysine?
The p K_a values of lysine are 1.82 (α -C What is the value of the isoelectric poi	COOH), 8.95 (α -NH _{3°}) and 10.53 (side chain). int of lysine?
The p K_a values of lysine are 1.82 (α -C What is the value of the isoelectric poi	COOH), 8.95 (α -NH ₃ °) and 10.53 (side chain). int of lysine? pI =
The p K_a values of lysine are 1.82 (α -C What is the value of the isoelectric poi	COOH), 8.95 (α -NH ₃ °) and 10.53 (side chain). int of lysine? pI =
The p K_a values of lysine are 1.82 (α -C What is the value of the isoelectric poi Draw the Fischer projection of the zwi	200H), 8.95 (α -NH ₃ °) and 10.53 (side chain). int of lysine? pI = itterionic form of lysine.
The p K_a values of lysine are 1.82 (α -C What is the value of the isoelectric poi Draw the Fischer projection of the zwi	200H), 8.95 (α -NH ₃ °) and 10.53 (side chain). int of lysine? pI =itterionic form of lysine.
The p K_a values of lysine are 1.82 (α -C What is the value of the isoelectric point of the society of the sector projection of the sector control of t	COOH), 8.95 (α -NH ₃ *) and 10.53 (side chain). int of lysine? pI = itterionic form of lysine.
The p K_a values of lysine are 1.82 (α -C What is the value of the isoelectric point of the society of the second seco	200H), 8.95 (α -NH ₃ °) and 10.53 (side chain). int of lysine? pI = itterionic form of lysine.
The p <i>K</i> _a values of lysine are 1.82 (α-C What is the value of the isoelectric poi	COOH), 8.95 (α-NH ₃ °) and 10.53 (side chain). int of lysine?

nucleotide

DATA SHEET

Physical constants Avogadro constant, $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$ Faraday constant, $F = 96485 \text{ C mol}^{-1}$ Planck constant, $h = 6.626 \times 10^{-34} \text{ J s}$ Speed of light in vacuum, $c = 2.998 \times 10^8 \text{ m s}^{-1}$ Rydberg constant, $E_R = 2.18 \times 10^{-18} \text{ J}$ Boltzmann constant, $k_B = 1.381 \times 10^{-23} \text{ J K}^{-1}$ Permittivity of a vacuum, $\varepsilon_0 = 8.854 \times 10^{-12} \text{ C}^2 \text{ J}^{-1} \text{ m}^{-1}$ Gas constant, $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$ $= 0.08206 \text{ L atm K}^{-1} \text{ mol}^{-1}$ Charge of electron, $e = 1.602 \times 10^{-19} \text{ C}$ Mass of electron, $m_p = 1.6726 \times 10^{-27} \text{ kg}$ Mass of neutron, $m_n = 1.6749 \times 10^{-27} \text{ kg}$

Properties of matter

Volume of 1 mole of ideal gas at 1 atm and 25 °C = 24.5 L Volume of 1 mole of ideal gas at 1 atm and 0 °C = 22.4 L Density of water at 298 K = 0.997 g cm⁻³

Conversion factors	
1 atm = 760 mmHg = 101.3 kPa = 1.013 bar	$1 \text{ Ci} = 3.70 \times 10^{10} \text{ Bq}$
$0 ^{\circ}\text{C} = 273 \text{K}$	$1 \text{ Hz} = 1 \text{ s}^{-1}$
$1 L = 10^{-3} m^3$	1 tonne = 10^3 kg
$1 \text{ Å} = 10^{-10} \text{ m}$	$1 \text{ W} = 1 \text{ J s}^{-1}$
$1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$	

Decimal fractions		Deci	Decimal multiples		
Fraction	Prefix	Symbol	Multiple	Prefix	Symbol
10^{-3}	milli	m	10^{3}	kilo	k
10^{-6}	micro	μ	10^{6}	mega	Μ
10^{-9}	nano	n	10 ⁹	giga	G
10^{-12}	pico	р	10 ¹²	tera	Т

Standard Reduction Potentials, E°	
Reaction	E° / V
$\operatorname{Co}^{3+}(\operatorname{aq}) + e^{-} \rightarrow \operatorname{Co}^{2+}(\operatorname{aq})$	+1.82
$\operatorname{Ce}^{4+}(\operatorname{aq}) + \operatorname{e}^{-} \rightarrow \operatorname{Ce}^{3+}(\operatorname{aq})$	+1.72
$MnO_4^{-}(aq) + 8H^+(aq) + 5e^- \rightarrow Mn^{2+}(aq) + 4H_2O$	+1.51
$\operatorname{Au}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Au}(s)$	+1.50
$Cl_2 + 2e^- \rightarrow 2Cl^-(aq)$	+1.36
$O_2 + 4H^+(aq) + 4e^- \rightarrow 2H_2O$	+1.23
$Pt^{2+}(aq) + 2e^{-} \rightarrow Pt(s)$	+1.18
$MnO_2(s) + 4H^+(aq) + e^- \rightarrow Mn^{3+} + 2H_2O$	+0.96
$NO_3^{-}(aq) + 4H^+(aq) + 3e^- \rightarrow NO(g) + 2H_2O$	+0.96
$Pd^{2+}(aq) + 2e^{-} \rightarrow Pd(s)$	+0.92
$NO_3^-(aq) + 10H^+(aq) + 8e^- \rightarrow NH_4^+(aq) + 3H_2O$	+0.88
$Ag^+(aq) + e^- \rightarrow Ag(s)$	+0.80
$Fe^{3+}(aq) + e^- \rightarrow Fe^{2+}(aq)$	+0.77
$Cu^+(aq) + e^- \rightarrow Cu(s)$	+0.53
$\operatorname{Cu}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Cu}(s)$	+0.34
$\operatorname{BiO}^{+}(\operatorname{aq}) + 2\operatorname{H}^{+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Bi}(\operatorname{s}) + \operatorname{H}_{2}\operatorname{O}$	+0.32
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.15
$2\mathrm{H}^{+}(\mathrm{aq}) + 2\mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{g})$	0 (by definition)
$\operatorname{Fe}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Fe}(s)$	-0.04
$Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$	-0.126
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}(s)$	-0.136
$Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$	-0.24
$\operatorname{Co}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Co}(s)$	-0.28
$Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$	-0.40
$Fe^{2^+}(aq) + 2e^- \rightarrow Fe(s)$	-0.44
$\operatorname{Cr}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Cr}(s)$	-0.74
$\operatorname{Zn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Zn}(s)$	-0.76
$2H_2O + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$	-0.83
$\operatorname{Cr}^{2^+}(\operatorname{aq}) + 2e^- \rightarrow \operatorname{Cr}(s)$	-0.89
$Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$	-1.68
$\mathrm{Sc}^{3+}(\mathrm{aq}) + 3\mathrm{e}^{-} \rightarrow \mathrm{Sc}(\mathrm{s})$	-2.09
$Mg^{2+}(aq) + 2e^{-} \rightarrow Mg(s)$	-2.36
$Na^+(aq) + e^- \rightarrow Na(s)$	-2.71
$\operatorname{Ca}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Ca}(s)$	-2.87
$Li^+(aq) + e^- \rightarrow Li(s)$	-3.04

June 2013

Usejui jormulas							
Quantum Chemistry	Electrochemistry						
$E = h\nu = hc/\lambda$	$\Delta G^{\circ} = -nFE^{\circ}$						
$\lambda = h/mv$	Moles of $e^- = It/F$						
$E = -Z^2 E_{\rm R}(1/n^2)$	$E = E^{\circ} - (RT/nF) \times \ln Q$						
$\Delta x \cdot \Delta(mv) \ge h/4\pi$	$E^{\circ} = (RT/nF) \times \ln K$						
$q = 4\pi r^2 \times 5.67 \times 10^{-8} \times T^4$	$E = E^{\circ} - \frac{0.0592}{\log O} \log O \text{ (at 25 °C)}$						
$T\lambda = 2.898 \times 10^6 \text{ K nm}$	n						
Acids and Bases	Gas Laws						
$pH = -log[H^+]$	PV = nRT						
$pK_{\rm w} = pH + pOH = 14.00$	$(P+n^2a/V^2)(V-nb) = nRT$						
$pK_w = pK_a + pK_b = 14.00$	$E_{\rm k} = \frac{1}{2}mv^2$						
$pH = pK_a + \log\{[A^-] / [HA]\}$							
Radioactivity	Kinetics						
$t_{1/2} = \ln 2/\lambda$	$t_{\frac{1}{2}} = \ln 2/k$						
$A = \lambda N$	$k = A e^{-Ea/RT}$						
$\ln(N_0/N_t) = \lambda t$	$\ln[\mathbf{A}] = \ln[\mathbf{A}]_{\rm o} - kt$						
14 C age = 8033 ln(A_0/A_t) years	$\ln \frac{k_2}{k_1} = \frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$						
Colligative Properties & Solutions	Thermodynamics & Equilibrium						
$\Pi = cRT$	$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$						
$P_{\text{solution}} = X_{\text{solvent}} \times P^{\circ}_{\text{solvent}}$	$\Delta G = \Delta G^{\circ} + RT \ln Q$						
c = kp	$\Delta G^{\circ} = -RT \ln K$						
$\Delta T_{\rm f} = K_{\rm f} m$	$\Delta_{\rm univ}S^\circ = R \ln K$						
$\Delta T_{\rm b} = K_{\rm b} m$	$K_{\rm p} = K_{\rm c} \left(\frac{RT}{100}\right)^{\Delta n}$						
Miscellaneous	Mathematics						
$A = -\log \frac{I}{I_0}$	If $ax^2 + bx + c = 0$, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$						
$A = \varepsilon c l$	$\ln x = 2.303 \log x$						
$E = -A - \frac{e^2}{N_A}$	Area of circle = πr^2						
$4\pi\varepsilon_0 r^{1/A}$	Surface area of sphere = $4\pi r^2$						

Useful formulas

ACTINOIDS	LANTHANOI S	87 FRANCIUM Fr [223.0]	55 caesium Cs 132.91	37 Rubidum Rb 85.47	19 м К 39.10	11 sobium Na 22.99	алыным 1 Li 6.941	1 нурвосел Н 1 008	1
89 Астилим Ас [227.0]	57 LANTHANIM 138.91	88 89 кланим Ra 226.0]	56 57 вляним Ва 137.34	38 STRONTIUM VI ST 87.62 87.62 87.62	20 сл.сним Са 40.08 4	12 алсиезиим Мg 24.31	4 Ве 9.012		2
тновим Тћ 232.04	58 Секним Се 140.12	-103 10 RUTHER F [2)	7-71 7 HAR I 178	39 4 тним ^{дика} Y Z 8.91 91	21 2 малим тита Sc Т 4.96 47				3
ркотастич Ра [231.0]	59 PRASEODVAIU Pr 140.91	04 105 FORDIUM DUBNIU Kf Dk 53] [268	2 73 ким талта. If Та 3.49 180.9	0 41 эмим мови 1г Nb 22 92.9	2 1 1 1 23 1 23 1 23 1 23 23 1 23 1 23				т Л
м	м 60 NEODYMUN Nd 144.24	5 106 м seaborgiu 9 Sg 1 [271]	74 TUNGSTEN 1 W 95 183.85	42 м могляреки Мо 1 95.94	сикомии» 4 52.00				6
уз Nр [237.0]	61 ркометним Рт [144.9]	107 вонянм Вћ [274]	75 внемим Re 186.2	43 тесиметим Тс [98.91]	25 Manganese Mn 54.94				T
94 Ри [239.1]	62 замаяним Sm 150.4	108 назвим Н S [270]	76 озмиим Оз 190.2	44 витнемим Ru 101.07	26 ^{IRON} Fe 55.85				×
уу Амекісійм Ата [243.1]	63 енкорим Е ц 151.96	109 ментиевиим ри Мt [278]	77 ^{ікіріцм} 192.22	45 Rh 102.91	27 Со 58.93				9
96 Ст [247.1]	64 салосылием Gd 157.25	110 кризтартим рој Ds [281]	78 Рьатими Рt 195.09 1	46 Р д 106.4 1	28 Nickel Ni 58.69				10
веккеллом ВК [247.1]	65 теквим Тb 158.93	111 1 актаемим соре Rg ([281] [2	79 GOLD ME Au I 96.97 20	47 47 Ag (A) 07.87 11	29 Cu 53.55 6				11
98 CALIFORNIUN Cf [252,1]	66 ^{рузркозним} Ду 162.50	12 ^{RNICIUM} 285]	80 8 ксляч тыл. Hg 1 0.59 204	48 4 ∞ ^{MIUM} 4 2.40 114	$\begin{array}{c} 30 \\ 30 \\ 30 \\ 30 \\ 30 \\ 30 \\ 30 \\ 30 $	1 مىرىسى 26	10		12 1
т елязтеляцим Ез [252.1]	67 ноімісм НО 164.93	11, FLEROV F1280	1 82 1 82 1 Pt .37 207	9 50 n 50 -82 118	1 32 лим секмал Га С С 72 72.5	3 14 14 14 14 14 14 14 14 14 14 14 14 14	сани ком в сани сани сани сани сани сани сани сани		3 14
текином Fm [257.1]	68 Еквиля Е г 167.26	4 1 2	83 визмите Визмите Ві 2 208.9) 51 ланиом 69 121.7	аним Авзенис 33 39 74.92	н 15 эм рноярнов 1 Р 19 30.97	7 NI NITROGE N 1 14.01		15
101 Mendelevium Md [256.1]	69 тнилим Тт 168.93	116 LIVERMORIUN LV [293]	ва воложим Ро 8 [210.0]	52 TELLURUM Te 5 127.60	34 selentim Se 78.96	16 sulfur S 32.07	х охуден О 16.00		16
102 Nomelium [259.1]	70 VTTERBRIUM Yb 173.04		85 ASTATINE At [210.0]	53 IODINE I 126.90	<u>з</u> 5 вкоміле Вг 79.90	17 CHLORINE CI 35.45	9 FLUORINE F 19.00		17
103 LAWRENCIUM [260.1]	71 ьлтепим 174.97		86 ^{RADON} [222.0]	54 xenon Xe 131.30	36 KRYPTON Kr 83.80	18 ARGON Ar 39.95	10 NEON NEON 20.18	2 HELIOM	18

PERIODIC TABLE OF THE ELEMENTS

СНЕМІФІІ